Maximum colored trees in edge-colored graphs

نویسندگان

  • W. Fernandez de La Vega
  • Y. Manoussakis
  • C. Martinhon
  • R. Muthu
  • R. Saad
چکیده

Abstract We consider maximum properly edge-colored trees in edge-colored graphs Gc. We also consider the problem where, given a vertex r, determine whether the graph has a spanning tree rooted at r, such that all root-to-leaf paths are properly colored. We consider these problems from graphtheoretic as well as algorithmic viewpoints. We prove their optimization versions to be NP-hard in general and provide algorithms for graphs without properly edge-colored cycles. We also derive some nonapproximability bounds. A study of the trends random graphs display with regard to the presence of properly edge-colored spanning trees is presented.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Homomorphisms of 2-edge-colored graphs

In this paper, we study homomorphisms of 2-edge-colored graphs, that is graphs with edges colored with two colors. We consider various graph classes (outerplanar graphs, partial 2-trees, partial 3-trees, planar graphs) and the problem is to find, for each class, the smallest number of vertices of a 2-edge-colored graph H such that each graph of the considered class admits a homomorphism to H.

متن کامل

Colored Trees in Edge-Colored Graphs

The study of problems modeled by edge-colored graphs has given rise to important developments during the last few decades. For instance, the investigation of spanning trees for graphs provide important and interesting results both from a mathematical and an algorithmic point of view (see for instance [1]). From the point of view of applicability, problems arising in molecular biology are often ...

متن کامل

ar X iv : 0 71 1 . 28 49 v 1 [ m at h . C O ] 1 9 N ov 2 00 7 Partitioning complete graphs by heterochromatic trees ∗

A heterochromatic tree is an edge-colored tree in which any two edges have different colors. The heterochromatic tree partition number of an r-edge-colored graph G, denoted by tr(G), is the minimum positive integer p such that whenever the edges of the graph G are colored with r colors, the vertices of G can be covered by at most p vertex-disjoint heterochromatic trees. In this paper we determi...

متن کامل

equi-bipartite graphs by monochromatic trees under a color degree condition

The monochromatic tree partition number of an r-edge-colored graph G, denoted by tr(G), is the minimum integer k such that whenever the edges of G are colored with r colors, the vertices of G can be covered by at most k vertex-disjoint monochromatic trees. In general, to determine this number is very difficult. For 2-edge-colored complete multipartite graph, Kaneko, Kano, and Suzuki gave the ex...

متن کامل

Rainbow spanning subgraphs of edge-colored complete graphs

Consider edge-colorings of the complete graph Kn. Let r(n, t) be the maximum number of colors in such a coloring that does not have t edge-disjoint rainbow spanning trees. Let s(n, t) be the maximum number of colors in such a coloring having no rainbow spanning subgraph with diameter at most t. We prove r(n, t) = (n−2 2 )

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009